Predicting Primary Tumors using Multiclass Classifier Approach of Data Mining
نویسندگان
چکیده
Data mining has been widely adopted in recent years in many fields, especially in the medical field. This paper highlights the prediction of unknown primary tumors in the dataset. The multiclass classifier with Random forest is used for classification of multiclass dataset as it gives much higher accuracy than binary classifiers. SMOTE method for this imbalanced dataset with Randomize technique is applied during preprocessing for reducing the biasness among classes. These all evaluations and results are carried out using WEKA 3. 6. 10 as a data mining tool.
منابع مشابه
A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملMulticlass cancer classification and biomarker discovery using GA-based algorithms
MOTIVATION The development of microarray-based high-throughput gene profiling has led to the hope that this technology could provide an efficient and accurate means of diagnosing and classifying tumors, as well as predicting prognoses and effective treatments. However, the large amount of data generated by microarrays requires effective reduction of discriminant gene features into reliable sets...
متن کاملA parametric model for predicting cut point of hydraulic classifiers
A new parametric model was developed for predicting cut point of hydraulic classifiers. The model directly uses operating parameters including pulp flowrate, feed particle size characteristics, pulp solids content, solid density and particles retention time in the classification chamber and also covers uncontrollable errors using calibration constants. The model applicability was first verified...
متن کاملS Tudents ’ P Erformance P Rediction S Ystem Using M Ulti a Gent Data M Ining T Echnique
A high prediction accuracy of the students’ performance is more helpful to identify the low performance students at the beginning of the learning process. Data mining is used to attain this objective. Data mining techniques are used to discover models or patterns of data, and it is much helpful in the decision-making. Boosting technique is the most popular techniques for constructing ensembles ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014